

Composing with All Sound Using the FreeSound and Wordnik APIs

Evan X. Merz
University of California at Santa Cruz

Music Department

1156 High Street

Santa Cruz, CA. 95064.
emerz@ucsc.edu

Abstract
In order to create algorithmic art using the wealth of
documents available on the internet, artists must discover
strategies for organizing those documents. In this paper I
demonstrate techniques for organizing and collaging sounds
from the user-contributed database at freesound.org. Sounds
can be organized in a graph structure by exploiting aural
similarity relationships provided by freesound.org, and
lexical relationships provided by wordnik.com. Music can
then be generated from these graphs in a variety of ways. In
the final section, I elaborate on three pieces I've generated
from sound graphs using cellular automata, and swarm
intelligence.

Introduction

One of my ambitions as a composer is to write music using
all types of sounds, including instrumental sounds,
recorded sounds, and synthesized sounds. With the wealth
of sounds available on the internet, it is possible to create
music by combining these sounds. However, this includes
such a variety of material that it is a daunting task to select
and organize sounds in a way that results in compelling
music.

In the project described here, I organized sounds into a
graph structure. A graph is a mathematical abstraction
made up of symbols and connections between those
symbols. Graphs are commonly used to model social
networks, links between websites on the internet, and street
maps.

The sounds are organized using two types of
relationships: sound similarity relationships and lexical
relationships. The sound similarity ratings are provided by
freesound.org, which is the source of the sounds used in
these compositions. The lexical relationships are provided
by wordnik.com.

 Copyright © 2013, Evan X. Merz. All rights reserved.

Related Work

Although Luigi Russolo dreamed of an expanded sound-
palette in the early twentieth century, incorporating many
sounds into music composition has been largely limited by
the available technology. However, the web has allowed
composers to access and include an ever more diverse
array of samples in their music. For some composers, using
many samples has become both a musical and a political
imperative. In 2008, Johannes Kreidler created Product
Placements, a piece containing 70,200 copyrighted
samples. His goal was to mock the outdated structure of
copyright law in the internet age. The culmination of his
protest occurred when he delivered thousands of pages of
paperwork to the German copyright authorities because he
was not allowed to register his samples online.

Other artists have created live web streams that
constantly combine and remix the media posted to the
internet. Ben Baker-Smith's Infinite Glitch is a piece of
software that combines videos from YouTube on the fly. It
exists as a permanent web installation at infiniteglitch.com,
where it generates an ever-changing, chaotic collage of
glitchy video remixes intended to overwhelm the viewer's
senses.

The works by Baker-Smith and Kreidler are extreme
examples of the type of composition that is possible with
the media on the internet. However, neither artist tried to
combine the disparate media in a way that considered the
content of the media files, and how they related to their
new context.

Since the late 1990s, mashup artists have been
combining parts of popular songs to form new
compositions based on the recognition of some shared
quality. These artists are relevant to this project
specifically because they recombine samples created by
other people, based on judgments that those samples work
well together, which is precisely the process that is
automated by my software. The usual formula for a

mashup is to combine the vocals from one recording with
the instruments from another. These type of mashups are
called A+B mashups, but mashups can get much more
complex.

Mashups are also pertinent to this work because they
transform listenership into a participatory experience. This
is enabled by various message boards and websites devoted
to creating mashups such as gybo5.com. Mashups are an
extension of the growing participatory culture movement
that has blossomed in the internet age.

The story of participatory culture starts with the
trekkies. Initially scorned by the media as outcasts (Jenkins
2006), trekkies often meet to share their fan-fiction and re-
enact their favorite scenes.

Websites such as FreeSound explicitly enable
participatory culture. FreeSound allows users to upload,
annotate and share audio files. Creating art with databases
that are accessible or modifiable by users has been dubbed
database art. Although database art is primarily a
movement in the visual arts, my work shares one distinct
characteristic with that movement. The software described
here essentially acts as an agent for the artist,
recontextualizing data from the web based on a process
created by the artist.

The data readymade in database art has two important
characteristics: a resistance to artist-made content and
the transformation of the conventional role of the
artist. Although the artist of this genre must contribute
the core concept to the artwork, he or she creates a
process more than a final product. It is this process
that causes a flow of meaning between the old and the
new contexts. (Hsu 2013, 81)

It's also important to note that other composers have
written software that generates music using online audio
files. Indeed, that was the initial goal of the creators of the
FreeSound website. Before FreeSound, one of the creators
worked on a project called Public Sound Objects, which
provided a shared musical space for real-time
collaboration.

The Public Sound Objects (PSOs) project consists
of... a networked musical system, which is an
experimental framework to implement and test new
concepts for online music communication. The PSOs
project approaches the idea of collaborative musical
performances over the Internet by aiming to go
beyond the concept of using computer networks as a
channel to connect performing spaces. This is
achieved by exploring the internet's shared nature in
order to provide a public musical space where
anonymous users can meet and be found performing
in collective sonic art pieces. (Barbosa 2005, 233)

This project was expanded after FreeSound was
established in a project called FreeSound Radio.

FreeSound Radio [is] an experimental environment
that allows users to collectively explore the content in
Freesound.org by listening to combinations of sounds
represented using a graph data structure. Users can
create new combinations from scratch or from
existing ones. A continuous supply of potential
combinations is provided by a genetic algorithm for
the radio to play. (Romo et. al. 2009)

These earlier projects differ from this one in several
ways. Significantly, my own work incorporates lexical
relationships to connect otherwise unrelated sounds in the
FreeSound database.

Constructing Sound Graphs

While both Google and Yahoo allow users to search for
sound files, neither search engine is optimized to search for
audio. When you search for sound files using a traditional
search engine, your search returns audio files that occur
near where your search terms appear. On properly named
and documented audio files, this might lead to a file related
to the search terms, but traditional search engines do not
return any additional information. It is impossible to know
the duration of the sound, or to find similar sounds, or to
get a set of tags that might describe the sound. FreeSound
provides a searchable database of user-contributed sounds
that can work in place of a traditional search engine.
FreeSound contains a database of over 66,000 sounds, as
well as audio analysis information and user-submitted tags.

FreeSound provides access to their user-generated
database of sounds through an application programming
interface (API). An API is a protocol that programs can use
to communicate with one another. In this case, my program
makes requests to the FreeSound website, which returns
the requested data. The FreeSound API provides multiple
search mechanisms for retrieving sounds, including text
search, content-based search, and sound similarity search.
In my software, the text search is used to find sounds
relating to the initial search term and sounds with related
tags, while the similarity search is used to build networks
around those sounds.

The FreeSound text search checks nearly all the text and
numeric fields associated with a sound, including file
name, file id, description and tags. According to the API
documentation, "searching for '1234' will find you files
with id 1234, files that have 1234 in the description etc"
(FreeSound API Documentation). This leads to results
where all interpretations of the search terms are included.
For instance, when I searched for the term metal, the first

two pages of results contained sounds made by hitting
metal objects, while the third page contained a sample of a
heavy-metal band.

The FreeSound similarity search relies on a distance
metric that combines features from several other analyses.

the similarity measure used is a normalized
Manhattan distance of audio features belonging to
three different groups: a first group gathering spectral
and temporal descriptors included in the MPEG-7
standard; a second one built on Bark Bands perceptual
division of the acoustic spectrum, using the mean and
variance of relative energies for each band; and,
finally a third one, composed of Mel-Frequency
Cepstral Coefficients and their corresponding
variances. (Martinez et. al., 2009)

These search-based mechanisms are used to build graphs
of related sounds. A graph is a mathematical abstraction
consisting of vertices and edges. The vertices are symbols,
while the edges represent connections between those
symbols. In this project, the vertices sounds, while the
edges represent an aural or lexical relationship between
two sounds. The aural edges are weighted by their
similarity rating. Sounds with a lower distance rating are
connected by edges with a higher weight. The lexical edges
are unweighted. The current version of the program does
not consider edge weight in activation, but future versions
of the program may do so. The graphs contain the raw
materials for a piece, and the connections that might be
explored in building a piece. But the graph is not a
composition in itself. It is merely a static data structure.
The sounds in the graph must be activated in order to
generate a new piece.

The initial sound is obtained by using a text search on
search terms provided by the composer. The first sound
returned by that search is used as the first vertex.

Next a basic similarity search is used to attach sounds
with a similarity distance less than a predefined threshold.
The similarity search provided by the FreeSound API
never returns fewer than fifteen sounds, but it may be the
case that the sounds returned aren't very similar to the
original sound. The composer can specify a distance
threshold that tells the program to ignore sounds that are
not very similar to the sound under consideration. Some of
the sounds may have a similarity distance greater than the
specified threshold. As of this writing, the FreeSound
database contains over 66,000 sound files, so there are
usually several sounds that are audibly similar to the
starting sound. The program adds these sounds to the
graph, and adds edges connecting the new sounds to the
target sound.

Figure 1. Basic Similarity Search

After the basic similarity search, a recursive similarity
search is employed to get a list of sounds, each being the
most similar sound to the previous sound. In other words, a
similarity search is executed on the most similar sound to
the original sound. The resulting most similar sound is
connected to that sound. Then this process is repeated up to
a composer-specified depth. This creates a chain of sounds
of length equal to a composer-specified value. This allows
a composition to move from a specified sound to other
sounds that are less related by steps.

Figure 2. Recursive Similarity Search

So far all of the sounds in the graph other than the initial
vertex are discovered via similarity search. However, a
composer may want a piece to suddenly switch from one
group of related sounds to another one entirely. Using only
similarity connections, however, the program would have
to go through many similar sounds before sufficiently
different sounds are found. There is no way to connect one

group of sounds, to sounds that may be related but aren't
audibly similar. Another search mechanism is required in
order to allow a piece to have sections exploring other
types of sounds. In this case, I use words related to the
sounds in question to search for new sounds.

Wordnik.com provides an API that allows a program to
find words that are related to a target word. The related
words fall into categories that include synonyms,
hypernyms, hyponyms, same-context, reverse dictionary,
and tags. Provided the term clock, for example, Wordnik
returns the synonym timepiece, the same-context word
lamp, and the hyponym atomic clocks.

In my software, the tags on the original sound on
FreeSound are used as search terms to the Wordnik API.
The related words returned by Wordnik are then used as
new search terms in FreeSound. This provides a
mechanism through which the software can link aurally
disparate groups of sounds. While the sounds returned in
the first two mechanisms are related by aural similarity, the
sounds returned using this final method are related
lexically. Figure 3 shows two aurally-related sub-graphs
that are connected by a lexical edge.

Once these three steps are completed on the initial
vertex, they can be repeated on any other vertex in the
graph. This allows the composer to build arbitrarily large

sound graphs that contain however many sounds or sound-
areas the composer desires.

One significant caveat to this approach that must be
mentioned is that it assumes that the relationships culled
from the FreeSound and Wordnik databases are salient to a
potential listener. The music generated in this project
draws out underlying relationships in those databases. It is
a limitation of this work that the resulting music may only
be successful to listeners who can comprehend those
relationships. However, this is not a very severe limitation
for several reasons. First, since the data is drawn from
user-driven sites, I think it's fair to assume that the
relationships represented in the databases are at least
understood by the users of those sites. Second, if the
relationships in the databases were useless, then the sites
would cease to be popular resources on the web. Finally,
it's important to note that these two data sources could
easily be replaced by other sites, such as ccmixter and
dictionary.com, or any databases that are deemed more rich
in a potential artistic context. An expansion of this project
might compare audio similarity algorithms, and evaluate
the quality of word relationships returned by Wordnik.

Graphs created in this way capture the relationships
between sounds and organize them in a way that a listener
can understand. However, these graphs are simply static
data structures. In order to create art, the networks must be
activated.

Creating Music by Activating Sound Graphs

After a group of sounds has been organized in a graph
structure, those sounds must be accessed and triggered in
some way. Activating these sounds is the second part of
music creation using the system described here. The
sounds can be activated in a limitless number of ways. A
program might randomly wander from vertex to vertex,
triggering sounds as it moves. Or a search strategy might
be used to wander through the graph in a directed way. The
goal of the activation step is to create a collage of sounds.
In early versions of my program it wrote collages directly
to audio files; however, the current version writes to a
format that can be subsequently manipulated in a digital
audio workstation (DAW).

The collage generation step creates a Reaper Project file.
The Reaper file format was created by Cockos for use in
the Reaper DAW. Reaper files can contain all the track,
media, midi and processing information that might be
created in a music production project. In this case, the
software creates many tracks in the output file, and
organizes the audio collage onto those tracks. So the output
file contains an editable Reaper project which gives me the
opportunity to clean up or modify the algorithmic
composition. Typically, several files in the collage will be

Figure 3. Lexically Related Sub-graphs

unreadable, and several will have audio errors. I usually
remove these files from the project before rendering it. On
several pieces where I wanted to explore a collaboration
between myself and the software, I edited the output more
heavily, but this is atypical.

I have explored the collage-creation step with several
algorithms. In one of my first experiments, I coded an
algorithm similar to a depth-first search which seeks to the
end of the longest path in the graph. Specifically, I created
a graph consisting of one long chain of sounds by using
recursive similarity search to a depth of thirty. A depth first
search activation strategy then starts from the initial vertex,
and seeks to the final sound in the chain. The sounds along
the path are activated in turn when 66% of the previous
sound has been played. This graph creation and traversal
strategy is aesthetically interesting, because it essentially
sonifies the similarity algorithm employed by FreeSound.
In pieces generated this way, the listener can hear how the
similarity algorithm is similar and different from his own
understanding of aural similarity.

My next attempt at sound graph activation employed
cellular automata. Cellular automata are deterministic
programs where many cells act simultaneously. Every cell
has a state and a rule set. Each cell may have a different
state, but all cells have the same rule set. The rules
determine the state of a cell at any time t, based on the state
of that cell's neighbors at time t-1. It's difficult to code a
standard cellular automaton that works on a sound graph
because in the standard model of cellular automata, all
cells are connected in the same way. In other words, they
all have the same number of neighbors. In the sound
graphs created by my software, this isn't the case. So
finding a rule system that leads to the emergence of
interesting non-cyclical patterns is very difficult. In most
of the rule sets I tried, the automaton either quickly moved
to a steady state where all cells were off, or it quickly
devolved into an oscillating pattern where the same cells
were activated repeatedly. Neither of these outcomes are
desirable in music composition where variation over time
is a fundamental value of the composer. As a result of
these early experiments with cellular automata, I turned to
a variation on cellular automata suggested by a colleague.

In this variation on cellular automata, a king vertex is
selected that will act as the center or beginning of the
activations. After the king is activated, activations radiate
outward from the king, ignoring previously activated
vertices. When 66% of the king sound has been heard, all
vertices that are neighbors to the king are activated. When
66% of the longest sound in that group has been heard, all
vertices that are neighbors to those sounds and haven't yet
been activated, are activated. This continues until all
sounds are heard. In other words, the king is activated first,
followed by all sounds at distance one from the king, then
all sounds at distance two, then all sounds at distance three,

and so on until all sounds have been activated. This
activation strategy is useful as a sonically unique
alternative to the other two strategies explored here.

The third graph activation strategy I will describe
employs swarm intelligence. This activation strategy is
successful because it allows all the different relationships
embodied in a graph to emerge in the resulting collage.
This leads to novel juxtapositions of aurally and lexically
related sounds. The program uses a variation on Craig
Reynolds' boids algorithm. The boids algorithm has three
rules: separation, alignment and cohesion. The separation
rule says that boids shouldn't run into one another. The
alignment rule says that a boid should move in roughly the
same direction as the boids around it. The cohesion rule
says that the boid should stay near the boids it can see.
These rules must be slightly modified to work within the
discrete space of a graph, as opposed to the continuous
space of a typical boids simulation. The separation rule
becomes an over-crowding rule. If too many boids are on a
vertex, then that vertex becomes undesirable. The
alignment rule is eliminated because in a graph of the type
used by my software, direction doesn't exist. The cohesion
rule stays the same. Boids try to move with the swarm as
long as the space isn't too crowded.

The results of this swarm algorithm mean that the boids
move as a loose swarm around the sound graph. They
move around in roughly the same area of the graph without
all being on exactly the same space. In other words, they
explore the distinct neighborhoods created in the graph
creation step. In the remainder of this essay, I am going to
show some of the graphs created by my software, and the
music that resulted from activating these graphs.

Compositions

Toll
Toll is a short piece created by using the king cellular
automaton. In this activation strategy, the initial sound is
activated, followed by all sounds at distance one, then all
sounds at distance two, and so on until all sounds have
been activated. The piece is only 100 seconds long because
each sound in the graph occurs exactly once, with many
sounds often beginning at the same time.

The graph was created by searching for the term chimes.
There are many high quality recordings of wind chimes on
FreeSound. Although a recording of wind chimes was the
first sound returned by the FreeSound, the graph also
diverged into sounds relating to music boxes. Hence,
various recordings of music boxes, particularly ones
playing Christmas songs, occur throughout Toll. Although
this was not my original intent when I started the piece,
this is an example of how my software has surprised me.

Sound Graph Details for Toll

Vertices 100

Edges 272

Degree Distribution

Degree Occurrences

1 63

2 13

3 9

5 1

6 1

7 1

8 3

11 2

12 4

13 2

18 1

Table 1. Sound Graph Details for Toll

Machine Song 1
Machine Song 1 was composed specifically for the
California State University at Fullerton New Music
Festival with the theme Voice in the 21st Century. I began
the piece by searching for the word sing. In the final piece,
the sound of a singing wine glass is juxtaposed with the
sound of a recorded reminder call. It's easy to understand
that the sound named SingGlas1.wav and the sound of a
recorded human voice are both related to the word sing,
however, the software made this connection through an
unexpected path.

After finding the initial sound, SingGlas1, the program
retrieved a similar sound called Hoot_1.wav, which
contains an owl hoot simulated with a whistle. The singing
wine glass and the simulated owl hoot were rated as similar
because they are both continuous tones at similar
frequencies. One of the tags on the latter sound is the word
hoot. My software then searched wordnik.com for words
related to hoot, and one of the hypernyms returned was
call. When freesound.org was then searched for the word
call, the recorded reminder call was the third result.

So the initial two sounds are related by aural similarity,
while the third sound is lexically related. The connection
between the word sing with a singing wine glass and a
recording of the human voice was created by exploiting
both similarity and lexical relationships.

Sound Graph Details for Machine Song 1

Vertices 100

Edges 323

Degree Distribution

Degree Occurrences

1 66

2 6

3 8

4 4

7 1

8 1

9 3

10 2

12 1

13 1

14 1

16 2

17 1

18 2

19 1

Table 2. Sound Graph Details for Machine Song 1

Glass Manufactory
In Glass Manufactory, noisy sounds are reinterpreted by
being placed in context with other wide-band noise sounds
as well as glassy tones returned from the search term glass.
The structure of the piece created by the swarm agents is
clearly demonstrated by the stark contrast between these
two sound areas.

The initial sound returned from freesound.org after
searching for glass was glass7.aiff, which is a granular
resynthesis of a recording of rubbed glass, according to the
description provided by its creator. It is a smooth tone that
is given a slightly alien quality by the granular synthesis.
Through the initial similarity searches, it was connected to
various other tones, including guitar strumming and other
synthesized sounds. Eventually, by exploiting the hyponym

hourglass, it was connected to a recording of sand pouring
through an hourglass that was made with a contact
microphone. Because of the way it was recorded, the sand
in the hourglass sounds like white noise. Using similarity
searches, my program built a neighborhood of similar
sounds around this white noise sound.

The drama of the final composition comes from
contrasting the areas of the graph made up of smooth
glassy tones with the areas of the graph made up of white-
noise-like sounds. The swarm imposed an interesting
formal outline on the piece by traveling between these two
sub-graphs within the larger creativity network. The graph
used in Glass Manufactory can be seen in figure 4, where
the labels on the vertices represent the file id in the
FreeSound database.

Figure 4. The Complete Graph for Glass Manufactory

Sound Graph Details for Glass Manufactory

Vertices 100

Edges 243

Degree Distribution

Degree Occurrences

1 71

2 11

3 2

4 2

8 6

9 2

11 3

12 2

13 1

Table 3. Sound Graph Details for Glass Manufactory

Conclusion and Future Work

From my initial goal of writing music with all types of
sound, I showed that it is possible to organize the wealth of
sounds available online by taking advantage of aural
similarity relationships provided by FreeSound, and lexical
relationships provided by Wordnik. After organizing the
sounds into graphs based on these relationships, I
demonstrated three ways the sounds in the graphs can be
activated to create new electroacoustic music. By
activating sounds along a chain of similar sounds, my
program can sonify the similarity algorithm used by
FreeSound. A modified cellular automaton allows my
software to generate clangorous collages that activate
sounds in waves radiating outward from the initial sound.
Finally, a modified boids algorithm allows my program to
release a virtual swarm on a sound graph. This activation
strategy allows musical form to emerge based on how the
swarm navigates the neighborhoods within a graph.

These activation strategies are only three out of a
potentially infinite variety of ways that sound graphs might
be used to generate music. I have spent some time
exploring other strategies for graph activation, but none
have been as useful as the three listed here. I am still
working on ways to use this algorithm to generate
vernacular style electronic music with a tonal center and a
steady pulse. I am also working on ways to use the
concepts here to generate visual art. In another article I will
show how these graphs are rooted in theories of creativity,

and how structures like these graphs can be used as a
general base for generating art of any type using content
from the internet.

All music discussed here can be streamed at
soundcloud.com/evanxmerz

References

Baker-Smith, Ben. 2012. Infinite Glitch. Accessed July 8, 2013.
http://bitsynthesis.com/infiniteglitch/.

Barbosa, Alvaro. 2005. Public Sound Objects: a shared
environment for networked music practice on the Web.
Organised Sound 10(3): 233-242.

FreeSound API Documentation. Accessed April 18, 2013.
http://www.freesound.org/docs/api/resources.html#sound-search-
resource.

Hsu, Wun-Ting, and Wen-Shu Lai. 2013. Readymade and
Assemblage in Database Art. Leonardo 46 (1): 80-81.

Jenkins, Henry. 2006. Fans, Bloggers, and Gamers. New York:
New York University Press. Kindle edition.

Katz, Mark. 2010. Capturing Sound: How Technology Has
Changed Music. Berkeley, CA: University of California Press.

Kerne, Andruid. 2000. CollageMachine: An Interactive Agent of
Web Recombination. Leonardo 33(5): 347-350.

Kreidler, Johannes. 2008. Product Placements (2008). Accessed
July 8, 2013. http://kreidler-net.de/productplacements-e.html.

Martınez, E.; Celma, O.; Sordo, M.; De Jong, B.; and Serra, X.
2009. Extending the folksonomies of freesound. org using
content-based audio analysis. In Sound and Music Computing
Conference. Porto, Portugal.

Roma, G.; Herrera, P.; and Serra, X. 2009. Freesound Radio:
supporting music creation by exploration of a sound database. In
Workshop on Computational Creativity Support.

Roma, G.; Herrera, P.; Zanin, M.; Toral, S. L.; Font, F.; and
Serra, X. 2012. Small world networks and creativity in audio clip
sharing. International Journal of Social Network Mining 1(1):
112-127.

