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Abstract
This  paper  is  an  examination  of  several  well-known
applications  of  artificial  intelligence  in  music  generation.
The  algorithms  in  EMI,  GenJam,  WolframTones,  and
Swarm  Music  are  examined  in  pursuit  of  ad  hoc
modifications. Based on these programs, it is clear that ad
hoc  modifications  occur  in  most  algorithmic  music
programs.  We must  keep this  in  mind  when generalizing
about computational creativity based on these programs. Ad
hoc algorithms model a specific task, rather than a general
creative  algorithm.  The  musical  metacreation  discourse
could benefit from the skepticism of the procedural content
practitioners at AIIDE.

 Introduction  

At MUME 2013, the group discussed whether it would be
possible to recreate David Cope's EMI. Attendees pointed
out  the  controversial  position  of  Cope's  work  in  the
musical metacreation discourse due to the ad hoc elements
in  his  program.  Al  Biles  also  explained  how  his  live
performance version of GenJam differs from a traditional
genetic algorithm. Some attendees argued that the ad hoc
elements  of  his  program  meant  the  end  result  wasn't  a
genetic algorithm at all.  These two discussions resonated
with my own work using artificial intelligence in music. As
musicians,  we  usually  place  the  creation  of  an  artifact
above  algorithmic  purity.  In  the  scruffy  versus  neat
dichotomy of the larger artificial intelligence community,
this makes most of us scruffies (Nilsson 2010, 334). In this
article  I  will  review  the  ad  hoc  properties  of  several
applications of artificial  intelligence to music generation.
Understanding the ad hoc elements in these algorithms is
important for musicology and to temper the rhetoric about
musical metacreation.
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What is Ad Hoc?

WordNet lists three definitions for ad hoc.

(adj) often improvised or impromptu

(adj) for or concerned with one specific purpose

(adv) for one specific case

The definitions that apply in this paper are the latter two.
This paper is not concerned with aleatoric or improvisatory
methods in software, but with algorithm changes that are
not  generalizable  to  other  settings.  How  are  ad  hoc
methods used in music software, and what do they mean
for the fields of musical  metacreation and computational
creativity?  In  this  paper  I  considered  three  aspects  to
decide if a change is an ad hoc modification or not.

First, some ad hoc methods are required for software to
be  music  software.  A C++ library that  simulates  swarm
intelligence  isn't  a  music tool.  There  must  be a  baseline
translation  from  non-musical  information  to  musical
information. The underlying space in which the algorithm
operates must be converted to a music space in some way.
This type of non-generalizable change is unavoidable any
time a general algorithm is applied to a specific domain.

Second,  ad  hoc  methodology  is  a  gray  area.  Some
modifications may be more or less ad hoc. Some changes
may be ad hoc in one context while they may not be ad hoc
in  another  context.  Consider  a  neural  network  that  only
examines pitches in the C-Major scale. This is an ad hoc
limitation in the case of all music, but a natural side effect
of the input when considering only nursery rhymes.

Third,  there  is  no  single  definition  of  a  paradigmatic
algorithm.  There  are  many  specialized  versions  of  most
successful algorithms. If an algorithm is ad hoc, then it is
not  generalizable  outside  of  specific  cases.  Simulated
annealing, for example, could be considered a modification



of  greedy  random  search  that  avoids  local  minima.
However,  since  simulated  annealing  does  not  apply
limitations  on  the  domain  or  context  of  application,  it
cannot  be  considered  an  ad  hoc  modification  of  greedy
random  search.  If  simulated  annealing  was  modified  so
that the cooling factor was based on the read position in a
piece of music, then that would be considered an ad hoc
modification in the context of this paper.

In  this  paper,  ad  hoc  changes  are  domain  dependent
modifications  of  the  associated  paradigm  of  artificial
intelligence, as defined by texts such as the Floreano and
Nierhaus.  This  paper  focuses  on  specific  ad  hoc
modifications  in  three  well-known  algorithmic
composition systems, as well as my own work.

EMI

In  Computer Models of Creativity (CMMC), David Cope
explains  his  Emmy  software,  and  spends  a  chapter
explaining  his  earlier  creation,  EMI.  Both  programs  are
based  on  Cope's  version  of  an  augmented  transition
network,  which  he  calls  an  association  network.  Cope's
association  networks  are  complete,  weighted,  directed
graphs.

"Association networks are initially empty databases in
which  a  user's  input  is  placed,  and  in  which  all
discrete entries of that input are connected to all other
discrete  entries.  Networks  react  to  input  by placing
each discrete entry into a node and assigning weights
to each of the connections between this entry's  node
and all of the other nodes in the network. Association
networks  assign  weights  in  both  directions  on  a
connection; that is, a weight from node X to node Y,
as well as a weight from node Y to node X. These
weights initially derive from proximity and similarity"
(Cope 2005, 274)

Cope's  association networks are not passive. Each vertex
can  incorporate  a  bit  of  code  that  it  can  run  in  certain
situations. For this reason, Gerhard Nierhaus uses the more
precise  term  augmented  transition  network  to  describe
Cope's data structure.

"In an augmented transition network (ATN), the TN is
extended in a  way that  allows  specific  instructions,
conditional jumps or also whole sub-programs to be
assigned to the edges." (Nierhaus 2010, 122)

In  EMI,  Cope  uses  association  networks  to  implement
musical  recombinancy.  Recombinancy  is  a  technique
whereby  parts  and  patterns  discovered  in  a  piece  are
shuffled and recombined to form a new composition. In the
case of EMI, many pieces are autonomously broken down,
analyzed,  and  recombined  according  to  the  information

derived  from the  analysis.  Pieces  are  broken  down into
patterns at several layers of specificity and generality. He
calls these patterns signatures,  earmarks,  and unifications
(Cope 2001, 109). Signatures are patterns that reoccur in a
single piece. Earmarks are patterns that indicate the form
of a piece.  Unifications are repeated patterns that  hold a
single piece together. Cope sees this layered recombination
process as an analogy for the creative process in humans.

Cope's  data  structures  are  virtually  identical  to  basic
Markov  models  (Nierhaus  2010,  68)  with  only  three
exceptions.  First,  the  edges  are  weighted,  rather  than
probabilistic.  This difference  is significant  because  Cope
tries to avoid decision-making based on random selection
(Cope  2001,  129).  Second,  there  are  many  augmented
transition networks used in EMI. There is one for pitches,
one for phrases, one for signatures, one for earmarks, and
so on. Cope is never specific about how these models are
combined in the music generation step. It's  clear that the
process is iterative, but otherwise we are left in the dark.

The major ad hoc modification in EMI is the methods
that  are  triggered  when  specific  transitions  occur.  The
program can trigger subroutines when specific transitions
in  the  network  are  used.  These  subroutines  may trigger
other  networks,  or  may  trigger  music  specific  code.
Without looking at the code itself, it's impossible to list all
the  methods,  but  in  Virtual  Music Douglas  Hofstadter
indicates that some of the code is domain specific.

“Voice-hooking  would  be  the  requirement  that  the
initial note of the melodic line of fragment f2 should
coincide with the next melodic note to which fragment
f1 led in its  original context...  texture-matching...  is
basically  the idea that  the notes  in  a chord can be
moved up or down pitchwise by full octaves and can
be  spread  out  time-wise  so  as  to  match  some
preexistent local pattern” (Hofstadter 2001, 45)

By  employing  logic  specific  to  notated  music,  Cope
encodes musical knowledge into the algorithm itself in an
ad hoc way.

GenJam

GenJam evolves  phrases  of  music  that  are  combined  to
form a jazz solo over a given chart. GenJam works in three
modes, learning, breeding, and demo. These three modes
break up the genetic algorithm into three parts.

In learning mode, GenJam works with a human mentor
to discover good measures of music and combine them into
phrases. In learning mode, measures and phrases of music
are  probabilistically  generated  based  on  the  chord
progression  for  the  piece,  and  scales  that  are  usually
acceptable over a given chord. Each snippet is rated by the
human  mentor,  who  acts  as  a  fitness  function.  The



measures are not transformed at all in learning mode, they
are simply rated.

In  breeding  mode,  a  population  of  48  measures  is
selected from the rated measures. The lowest-rated half of
the  measures  are  discarded.  Then  24  new  measures  are
generated  by  using  genetic  modifiers  on  the  remaining
measures.  Unlike  most  genetic  algorithms,  GenJam
employs  a  large  set  of  genetic  modifiers,  including  the
traditional  mutation  and  crossover,  as  well  as  several
genetic  modifiers  that  are  based  on  musical
transformations.  The  latter  category  includes  reverse,
invert, transpose, and sort.

"In an effort to accelerate learning by creating not just
new, but better offspring, these 'musically meaningful
mutation'  operators violate conventional GA wisdom
that genetic operators should be 'dumb' with respect to
the structures they alter." (Biles, 1994, 135)

Demo  mode  is  the  performance  mode.  In  demo  mode,
GenJam  simply  selects  and  combines  phrases  that  have
been deemed fit in breeding mode.

GenJam is not a standard genetic  algorithm in several
ways.  First,  the  fitness  function  is  a  human  rater.  This
presents  a  significant  algorithmic  bottleneck,  but  is  a
process that has been used successfully in several genetic
algorithm art projects (MacCallum 2012). This is not an ad
hoc change in most contexts, since the fitness function can
be  whatever  function  accurately  captures  the  salient
aspects of the domain. A human rater could be applied to
genetic algorithms in many domains. Second, there are two
types of populations. There is a population of measures and
a  population  of  phrases.  Again,  this  is  not  an  ad  hoc
change, this is just combining two genetic algorithms into
one  process.  Third,  the  genetic  modifiers  are  musically,
rather  than  biologically  inspired.  This  is  an  ad  hoc
modification  that  strictly  applies  to  music.  The standard
genetic modifiers of mutation and crossover can generate
enough variation to find musically valid output (Nierhaus
2010), however, the traditional operators would take more
generations  of  evolution,  and  a  larger  population.  The
musically  inspired  genetic  modifiers  are  a  required
modification due to the bottleneck  of a human rater.  By
using musically inspired genetic modifiers, Biles encodes
musical  information in the algorithm just as Cope did in
the subroutines in EMI.

Despite  all  of  these  modifications,  it  is  clear  that
GenJam includes all four standard ingredients of a genetic
algorithm  (Floreano  et  al.  2008,  13).  It  has  a  genetic
representation  of  the  solution,  a  population,  genetic
modifiers, and a type of fitness function. GenJam is similar
to  Cope's  EMI  because  both  programs  are  ad  hoc
modifications of algorithms that  have been  successful  in
other domains of artificial intelligence. In both cases, the

composers considered the musical output more important
than adhering to algorithmic purity.

Since the 1990s, GenJam has been heavily modified by
Biles. In a demonstration at MUME 2013, GenJam played
live with an improviser. The improviser's performance was
bred with individuals who were  previously bred  for  that
tune, then genetic modifiers were applied, and the results
were  recombined  into  a  new  solo  (Biles  2013).  This
modification is an even greater diversion from a standard
genetic  algorithm  because  Biles  removed  the  fitness
function  entirely.  Rather  than  use  a  fitness  function,  he
chose to use musically-informed genetic modifiers, which
can only generate music that is valid to its context.

WolframTones

WolframTones is a project initiated by Stephen Wolfram
and Peter Overmann in the early 2000s to apply cellular
automata to music generation.

Cellular  automata  are  models  of  discrete  dynamic
systems. Physicists such as John von Neumann, Stanislaw
Ulam, and Konrad Zuse used cellular automata to model
magnetism,  crystal  structure,  and population  growth  and
decay.  Cellular  automata  require  six  basic  ingredients,  a
cell  space,  a  state set,  a rule set,  a neighborhood,  initial
conditions, and time (Floreano et al. 2008, 102). There are
many types of cellular automata that can be defined using
these properties.

WolframTones is a publicly accessible music generation
tool that allows a user to specify parameters such as genre,
instrumentation, pitch mapping, and rhythmic pattern. The
program searches  for  a  cellular  automaton type  and rule
that  satisfies  the  user  parameters.  After  picking  an
automaton, the program flips the two dimensional output
of the automaton on its side, then uses that data as pitch
and duration information for each instrument selected by
the  user.  The  automaton  data  is  mapped  to  note  events
using  rules  relating  to  genre,  rhythmic  patterns,  and
instrumental roles.

The ad hoc elements of WolframTones enter through the
transformations applied to the automaton to account for the
genre. Wolfram indicates that a subprogram searches for a
valid rule set. The exact structure of this search is unclear.
The  output  of  the  one-dimensional  automaton  is  rotated
ninety degrees, then strips of the output are used as a data
source  for  each  instrument.  A  parameter  called  height
determines how many rows of the output are assigned to
each instrument, thus how many possible pitches can occur
in  the  resulting  part.  Specific  values  that  occur  in  the
output are then mapped to a scale or to a rhythmic pattern.
WolframTones  uses  rules  about  instrument  roles  to
distribute selected automaton data to selected voices. 



“Different  Roles  in  effect  represent  different
algorithms for picking out features in the automaton
pattern.  WolframTones  includes  many  such
algorithms;  different  ones  are  typically  chosen  for
different  musical  styles.  None  plays  no  notes.
Polyphonic  plays  all  notes  that  satisfy certain  basic
WolframTones criteria; it typically plays many notes
at a time. Lead n plays one note at a time, allowing
several choices for how the note should be picked out
from black cells in the underlying pattern. Chords n
plays a few notes at a time. Bass n plays one note at
time,  placing  it  at  a  lower  pitch  level.”  (Wolfram
Research n.d.)

The “certain basic WolframTones criteria” are unspecified,
but it's clear that this represents a significant part of what
the  application  does.  Is  the  intelligent  behavior  then
resulting  from  the  cellular  automaton  or  from the  rules
applied to it?

Rules also come into play to pick rhythms as well.

“WolframTones  includes  a  large  number  of
algorithms  for  deriving  drumming  from  underlying
automaton patterns. Each algorithm in effect specifies
a  different  procedure  for  determining  what
configuration  of  notes  in  each  beat  should  produce
what  drumming.  Different  styles  of  music  typically
involve  characteristically  different  drumming
patterns. In WolframTones all Percussion choices are
nevertheless  in  principle  available  for  all  styles--
though  'crossing'  drumming  patterns  can  lead  to
unusual results.” (Wolfram Research n.d.)

In the end, rules seem to dominate the data that is derived
from the cellular automaton.

Swarm Music

Musical knowledge can be encoded in the algorithm itself,
as in the previous examples, or it can be encoded in the
data  on  which  the  algorithm  operates.  If  a  composer
specifically  organizes  the  data  on  which  the  algorithm
operates  in  order  to  push  the  algorithm toward  specific
aesthetically  acceptable  outcomes,  then  intelligence  is
encoded in the data, not simulated by the program.

A  good  example  of  this  is  my application  of  swarm
intelligence  to  generate  sound  collages.  In  my  masters
work I wrote a program called Becoming Live that mapped
the boids algorithm to audio samples, and notated music. It
did  this  by  quantizing  the  swarm  playing  field  into  a
discrete grid and measuring the number of agents in a grid
space. If a space was crowded, then the associated music
data  was  added  to  the  output.  Movement  of  the  swarm
simply triggered music data that I had previously arranged
into a grid. This mapping is clearly ad hoc, as any system
that navigates a two dimensional space could be substituted

here for the swarm. A random walk, for example, could be
used  to  navigate  the  two  dimensional  space.  The
aesthetically pleasing nature of the output is derived from
the  composer's  input  rather  than  the  swarm actions.  As
long  as  the  music  data  is  strategically  arranged  by  the
composer, then the output will be acceptable.

Tim  Blackwell's  application  of  swarm  intelligence  to
music generation is inherently less ad hoc. In Blackwell's
mapping, the swarm moves on a three dimensional musical
space of pitch, loudness,  and location in measure.  These
parameters are less ad hoc than my mapping because they
are  basic  properties  of  MIDI-based  music.  Further,  the
swarm is moved around the space based on attractors that
are  derived  from MIDI input.  In  Blackwell's  simulation,
attractors are placed in the space based on input from a live
musician. The musician's note events attract the swarm to
similar note events. Blackwell's swarms are responding to
another  musician,  whereas  in  my  mapping,  the  swarm
wanders randomly based on the parameters of the swarm
simulation.  Blackwell's  swarm  algorithm  is  otherwise  a
standard boids simulation (Floreano 2008, 532).

Blackwell's  algorithm  still  contains  ad  hoc  elements
based  on  the  use  of  MIDI  for  input  and  output.  MIDI
assumes  the  western  chromatic  scale,  which  assumes
western instruments. This seems like a technical limitation
more  than  a  way  of  embedding  intelligence  in  the
algorithm, however, a swarm navigating a space defined by
frequency and timbre could be applicable to a wider range
of musical situations.

Conclusions

Ad  hoc  modifications  exist  in  most  algorithmic  music
programs. This should be expected to a degree, since there
is  a  minimum level  of  modification  that  is  necessary  to
generate musical data. Still, even the canonical examples
of particular techniques, contain significant deviations that
apply  only  to  the  domain  of  music  generation.  This  is
probably not an earth-shattering revelation to most readers,
but it's worth remembering that ad hoc modifications are
deeply  embedded in  artificial  intelligence  in  music.  If  a
program such as Cope's contains ad hoc elements, this does
not make it an exception that is outside the mainstream, but
rather brings it closer to common practice.

It is appropriate that composers care more about the end
result than about the nebulous idea of algorithmic purity,
but  ad  hoc  elements  must  be  considered  when  placing
algorithmic  composition  in  the  larger  context  of
computational creativity.  These systems were designed to
create art, not to test a hypothesis in a scientific way. As
such,  it  is  dangerous  to  generalize  about  such  systems'
capabilities,  and their  relationship to  human creativity.  I
am extremely skeptical of the claims about computational



creativity  put  forward  by  authors  such  as  Boden  and
Wolfram  based  on  examplar  systems  such  as  those
discussed here. Boden writes that “whatever it is that [EMI
is] doing is clearly very general in nature” (Boden 2004,
312).  Stephen  Wolfram  makes  similarly  broad  claims
about his WolframTones system.

“even  with  the  rules  of  a  simple  program,  it  was
possible  to  produce  the  kind  of  richness  and
complexity that,  for example, we see and admire in
nature...  We  were  making  music  that  was  good
enough that  people assumed it  must have the usual
human  origins:  we  had  succeeded  in  passing  the
analog of the Turing test for music.” (Wolfram 2011)

I do not doubt that the output from these programs can be
called  creative,  but  in  nearly every  computational  music
program there are ad hoc modifications that cast doubt on
the effectiveness of such systems in other domains. Ad hoc
methods are used to model a specific task rather than the
general  functioning  of  the  brain.  These  programs  may
reflect  how people create specific forms of music,  but it
seems unlikely that they tell us much about creative dance,
sculpture, web comics, or even music from other traditions.

One of the great  aspects of MUME 2013 and MUME
2014 is the integration with the AIIDE conference, where
we  are  intermingled  with  other  procedural  content
practitioners. Musical metacreators could benefit from the
type of rhetorical discipline advocated by Gillian Smith in
The  Seven  Deadly  Sins  of  PCG  Research.  Musical
metacreators must strive to answer the questions she poses
in a quantifiable way.

“How meaningfully different are the pieces of content
from each other? Are there certain kinds of content
that simply cannot be created? Are there certain kinds
of  content  that  the  generator  seems  to  be  biased
towards creating?... What were the assumptions made
when  creating  the  generator  -  do  you  assume  a
particular art style, or range of acceptable... values?”
(Smith 2013)

Smith's questions can be easily applied to music. Musical
metacreators  should  be  held  accountable  for  supplying
more than just hand picked examples.  Counter examples
where an algorithm fails should be part of every technical
report. How is GenJam tied to the jazz idiom? Does Cope's
EMI model  structures  in  non-western  music?  How does
Blackwell's  swarm  music  perform  in  a  more  structured
style of music? If these questions are left unanswered, then
it is incumbent on musicologists to supply these answers.
Claims made by software creators  must be examined by
researchers  who  understand  both  the  code  and  the
underlying algorithms.

Finally,  we  must  consider  the  question  of  why
successful algorithmic composition programs rely so much
on scruffy, ad hoc techniques. Music is tied to culture and
tradition as well  as mathematical  systems.  Is  algorithmic
purity  desirable,  or  even  compatible  with  the  goals  of
algorithmic composition as a field?
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