
Implications of Ad Hoc Artificial Intelligence in Music

Evan X. Merz
San Jose State University

Department of Computer Science

1 Washington Square

San Jose, CA. 95192.
evan.merz@sjsu.edu

Abstract
This paper is an examination of several well-known
applications of artificial intelligence in music generation.
The algorithms in EMI, GenJam, WolframTones, and
Swarm Music are examined in pursuit of ad hoc
modifications. Based on these programs, it is clear that ad
hoc modifications occur in most algorithmic music
programs. We must keep this in mind when generalizing
about computational creativity based on these programs. Ad
hoc algorithms model a specific task, rather than a general
creative algorithm. The musical metacreation discourse
could benefit from the skepticism of the procedural content
practitioners at AIIDE.

 Introduction

At MUME 2013, the group discussed whether it would be
possible to recreate David Cope's EMI. Attendees pointed
out the controversial position of Cope's work in the
musical metacreation discourse due to the ad hoc elements
in his program. Al Biles also explained how his live
performance version of GenJam differs from a traditional
genetic algorithm. Some attendees argued that the ad hoc
elements of his program meant the end result wasn't a
genetic algorithm at all. These two discussions resonated
with my own work using artificial intelligence in music. As
musicians, we usually place the creation of an artifact
above algorithmic purity. In the scruffy versus neat
dichotomy of the larger artificial intelligence community,
this makes most of us scruffies (Nilsson 2010, 334). In this
article I will review the ad hoc properties of several
applications of artificial intelligence to music generation.
Understanding the ad hoc elements in these algorithms is
important for musicology and to temper the rhetoric about
musical metacreation.

 Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

What is Ad Hoc?

WordNet lists three definitions for ad hoc.

(adj) often improvised or impromptu

(adj) for or concerned with one specific purpose

(adv) for one specific case

The definitions that apply in this paper are the latter two.
This paper is not concerned with aleatoric or improvisatory
methods in software, but with algorithm changes that are
not generalizable to other settings. How are ad hoc
methods used in music software, and what do they mean
for the fields of musical metacreation and computational
creativity? In this paper I considered three aspects to
decide if a change is an ad hoc modification or not.

First, some ad hoc methods are required for software to
be music software. A C++ library that simulates swarm
intelligence isn't a music tool. There must be a baseline
translation from non-musical information to musical
information. The underlying space in which the algorithm
operates must be converted to a music space in some way.
This type of non-generalizable change is unavoidable any
time a general algorithm is applied to a specific domain.

Second, ad hoc methodology is a gray area. Some
modifications may be more or less ad hoc. Some changes
may be ad hoc in one context while they may not be ad hoc
in another context. Consider a neural network that only
examines pitches in the C-Major scale. This is an ad hoc
limitation in the case of all music, but a natural side effect
of the input when considering only nursery rhymes.

Third, there is no single definition of a paradigmatic
algorithm. There are many specialized versions of most
successful algorithms. If an algorithm is ad hoc, then it is
not generalizable outside of specific cases. Simulated
annealing, for example, could be considered a modification

of greedy random search that avoids local minima.
However, since simulated annealing does not apply
limitations on the domain or context of application, it
cannot be considered an ad hoc modification of greedy
random search. If simulated annealing was modified so
that the cooling factor was based on the read position in a
piece of music, then that would be considered an ad hoc
modification in the context of this paper.

In this paper, ad hoc changes are domain dependent
modifications of the associated paradigm of artificial
intelligence, as defined by texts such as the Floreano and
Nierhaus. This paper focuses on specific ad hoc
modifications in three well-known algorithmic
composition systems, as well as my own work.

EMI

In Computer Models of Creativity (CMMC), David Cope
explains his Emmy software, and spends a chapter
explaining his earlier creation, EMI. Both programs are
based on Cope's version of an augmented transition
network, which he calls an association network. Cope's
association networks are complete, weighted, directed
graphs.

"Association networks are initially empty databases in
which a user's input is placed, and in which all
discrete entries of that input are connected to all other
discrete entries. Networks react to input by placing
each discrete entry into a node and assigning weights
to each of the connections between this entry's node
and all of the other nodes in the network. Association
networks assign weights in both directions on a
connection; that is, a weight from node X to node Y,
as well as a weight from node Y to node X. These
weights initially derive from proximity and similarity"
(Cope 2005, 274)

Cope's association networks are not passive. Each vertex
can incorporate a bit of code that it can run in certain
situations. For this reason, Gerhard Nierhaus uses the more
precise term augmented transition network to describe
Cope's data structure.

"In an augmented transition network (ATN), the TN is
extended in a way that allows specific instructions,
conditional jumps or also whole sub-programs to be
assigned to the edges." (Nierhaus 2010, 122)

In EMI, Cope uses association networks to implement
musical recombinancy. Recombinancy is a technique
whereby parts and patterns discovered in a piece are
shuffled and recombined to form a new composition. In the
case of EMI, many pieces are autonomously broken down,
analyzed, and recombined according to the information

derived from the analysis. Pieces are broken down into
patterns at several layers of specificity and generality. He
calls these patterns signatures, earmarks, and unifications
(Cope 2001, 109). Signatures are patterns that reoccur in a
single piece. Earmarks are patterns that indicate the form
of a piece. Unifications are repeated patterns that hold a
single piece together. Cope sees this layered recombination
process as an analogy for the creative process in humans.

Cope's data structures are virtually identical to basic
Markov models (Nierhaus 2010, 68) with only three
exceptions. First, the edges are weighted, rather than
probabilistic. This difference is significant because Cope
tries to avoid decision-making based on random selection
(Cope 2001, 129). Second, there are many augmented
transition networks used in EMI. There is one for pitches,
one for phrases, one for signatures, one for earmarks, and
so on. Cope is never specific about how these models are
combined in the music generation step. It's clear that the
process is iterative, but otherwise we are left in the dark.

The major ad hoc modification in EMI is the methods
that are triggered when specific transitions occur. The
program can trigger subroutines when specific transitions
in the network are used. These subroutines may trigger
other networks, or may trigger music specific code.
Without looking at the code itself, it's impossible to list all
the methods, but in Virtual Music Douglas Hofstadter
indicates that some of the code is domain specific.

“Voice-hooking would be the requirement that the
initial note of the melodic line of fragment f2 should
coincide with the next melodic note to which fragment
f1 led in its original context... texture-matching... is
basically the idea that the notes in a chord can be
moved up or down pitchwise by full octaves and can
be spread out time-wise so as to match some
preexistent local pattern” (Hofstadter 2001, 45)

By employing logic specific to notated music, Cope
encodes musical knowledge into the algorithm itself in an
ad hoc way.

GenJam

GenJam evolves phrases of music that are combined to
form a jazz solo over a given chart. GenJam works in three
modes, learning, breeding, and demo. These three modes
break up the genetic algorithm into three parts.

In learning mode, GenJam works with a human mentor
to discover good measures of music and combine them into
phrases. In learning mode, measures and phrases of music
are probabilistically generated based on the chord
progression for the piece, and scales that are usually
acceptable over a given chord. Each snippet is rated by the
human mentor, who acts as a fitness function. The

measures are not transformed at all in learning mode, they
are simply rated.

In breeding mode, a population of 48 measures is
selected from the rated measures. The lowest-rated half of
the measures are discarded. Then 24 new measures are
generated by using genetic modifiers on the remaining
measures. Unlike most genetic algorithms, GenJam
employs a large set of genetic modifiers, including the
traditional mutation and crossover, as well as several
genetic modifiers that are based on musical
transformations. The latter category includes reverse,
invert, transpose, and sort.

"In an effort to accelerate learning by creating not just
new, but better offspring, these 'musically meaningful
mutation' operators violate conventional GA wisdom
that genetic operators should be 'dumb' with respect to
the structures they alter." (Biles, 1994, 135)

Demo mode is the performance mode. In demo mode,
GenJam simply selects and combines phrases that have
been deemed fit in breeding mode.

GenJam is not a standard genetic algorithm in several
ways. First, the fitness function is a human rater. This
presents a significant algorithmic bottleneck, but is a
process that has been used successfully in several genetic
algorithm art projects (MacCallum 2012). This is not an ad
hoc change in most contexts, since the fitness function can
be whatever function accurately captures the salient
aspects of the domain. A human rater could be applied to
genetic algorithms in many domains. Second, there are two
types of populations. There is a population of measures and
a population of phrases. Again, this is not an ad hoc
change, this is just combining two genetic algorithms into
one process. Third, the genetic modifiers are musically,
rather than biologically inspired. This is an ad hoc
modification that strictly applies to music. The standard
genetic modifiers of mutation and crossover can generate
enough variation to find musically valid output (Nierhaus
2010), however, the traditional operators would take more
generations of evolution, and a larger population. The
musically inspired genetic modifiers are a required
modification due to the bottleneck of a human rater. By
using musically inspired genetic modifiers, Biles encodes
musical information in the algorithm just as Cope did in
the subroutines in EMI.

Despite all of these modifications, it is clear that
GenJam includes all four standard ingredients of a genetic
algorithm (Floreano et al. 2008, 13). It has a genetic
representation of the solution, a population, genetic
modifiers, and a type of fitness function. GenJam is similar
to Cope's EMI because both programs are ad hoc
modifications of algorithms that have been successful in
other domains of artificial intelligence. In both cases, the

composers considered the musical output more important
than adhering to algorithmic purity.

Since the 1990s, GenJam has been heavily modified by
Biles. In a demonstration at MUME 2013, GenJam played
live with an improviser. The improviser's performance was
bred with individuals who were previously bred for that
tune, then genetic modifiers were applied, and the results
were recombined into a new solo (Biles 2013). This
modification is an even greater diversion from a standard
genetic algorithm because Biles removed the fitness
function entirely. Rather than use a fitness function, he
chose to use musically-informed genetic modifiers, which
can only generate music that is valid to its context.

WolframTones

WolframTones is a project initiated by Stephen Wolfram
and Peter Overmann in the early 2000s to apply cellular
automata to music generation.

Cellular automata are models of discrete dynamic
systems. Physicists such as John von Neumann, Stanislaw
Ulam, and Konrad Zuse used cellular automata to model
magnetism, crystal structure, and population growth and
decay. Cellular automata require six basic ingredients, a
cell space, a state set, a rule set, a neighborhood, initial
conditions, and time (Floreano et al. 2008, 102). There are
many types of cellular automata that can be defined using
these properties.

WolframTones is a publicly accessible music generation
tool that allows a user to specify parameters such as genre,
instrumentation, pitch mapping, and rhythmic pattern. The
program searches for a cellular automaton type and rule
that satisfies the user parameters. After picking an
automaton, the program flips the two dimensional output
of the automaton on its side, then uses that data as pitch
and duration information for each instrument selected by
the user. The automaton data is mapped to note events
using rules relating to genre, rhythmic patterns, and
instrumental roles.

The ad hoc elements of WolframTones enter through the
transformations applied to the automaton to account for the
genre. Wolfram indicates that a subprogram searches for a
valid rule set. The exact structure of this search is unclear.
The output of the one-dimensional automaton is rotated
ninety degrees, then strips of the output are used as a data
source for each instrument. A parameter called height
determines how many rows of the output are assigned to
each instrument, thus how many possible pitches can occur
in the resulting part. Specific values that occur in the
output are then mapped to a scale or to a rhythmic pattern.
WolframTones uses rules about instrument roles to
distribute selected automaton data to selected voices.

“Different Roles in effect represent different
algorithms for picking out features in the automaton
pattern. WolframTones includes many such
algorithms; different ones are typically chosen for
different musical styles. None plays no notes.
Polyphonic plays all notes that satisfy certain basic
WolframTones criteria; it typically plays many notes
at a time. Lead n plays one note at a time, allowing
several choices for how the note should be picked out
from black cells in the underlying pattern. Chords n
plays a few notes at a time. Bass n plays one note at
time, placing it at a lower pitch level.” (Wolfram
Research n.d.)

The “certain basic WolframTones criteria” are unspecified,
but it's clear that this represents a significant part of what
the application does. Is the intelligent behavior then
resulting from the cellular automaton or from the rules
applied to it?

Rules also come into play to pick rhythms as well.

“WolframTones includes a large number of
algorithms for deriving drumming from underlying
automaton patterns. Each algorithm in effect specifies
a different procedure for determining what
configuration of notes in each beat should produce
what drumming. Different styles of music typically
involve characteristically different drumming
patterns. In WolframTones all Percussion choices are
nevertheless in principle available for all styles--
though 'crossing' drumming patterns can lead to
unusual results.” (Wolfram Research n.d.)

In the end, rules seem to dominate the data that is derived
from the cellular automaton.

Swarm Music

Musical knowledge can be encoded in the algorithm itself,
as in the previous examples, or it can be encoded in the
data on which the algorithm operates. If a composer
specifically organizes the data on which the algorithm
operates in order to push the algorithm toward specific
aesthetically acceptable outcomes, then intelligence is
encoded in the data, not simulated by the program.

A good example of this is my application of swarm
intelligence to generate sound collages. In my masters
work I wrote a program called Becoming Live that mapped
the boids algorithm to audio samples, and notated music. It
did this by quantizing the swarm playing field into a
discrete grid and measuring the number of agents in a grid
space. If a space was crowded, then the associated music
data was added to the output. Movement of the swarm
simply triggered music data that I had previously arranged
into a grid. This mapping is clearly ad hoc, as any system
that navigates a two dimensional space could be substituted

here for the swarm. A random walk, for example, could be
used to navigate the two dimensional space. The
aesthetically pleasing nature of the output is derived from
the composer's input rather than the swarm actions. As
long as the music data is strategically arranged by the
composer, then the output will be acceptable.

Tim Blackwell's application of swarm intelligence to
music generation is inherently less ad hoc. In Blackwell's
mapping, the swarm moves on a three dimensional musical
space of pitch, loudness, and location in measure. These
parameters are less ad hoc than my mapping because they
are basic properties of MIDI-based music. Further, the
swarm is moved around the space based on attractors that
are derived from MIDI input. In Blackwell's simulation,
attractors are placed in the space based on input from a live
musician. The musician's note events attract the swarm to
similar note events. Blackwell's swarms are responding to
another musician, whereas in my mapping, the swarm
wanders randomly based on the parameters of the swarm
simulation. Blackwell's swarm algorithm is otherwise a
standard boids simulation (Floreano 2008, 532).

Blackwell's algorithm still contains ad hoc elements
based on the use of MIDI for input and output. MIDI
assumes the western chromatic scale, which assumes
western instruments. This seems like a technical limitation
more than a way of embedding intelligence in the
algorithm, however, a swarm navigating a space defined by
frequency and timbre could be applicable to a wider range
of musical situations.

Conclusions

Ad hoc modifications exist in most algorithmic music
programs. This should be expected to a degree, since there
is a minimum level of modification that is necessary to
generate musical data. Still, even the canonical examples
of particular techniques, contain significant deviations that
apply only to the domain of music generation. This is
probably not an earth-shattering revelation to most readers,
but it's worth remembering that ad hoc modifications are
deeply embedded in artificial intelligence in music. If a
program such as Cope's contains ad hoc elements, this does
not make it an exception that is outside the mainstream, but
rather brings it closer to common practice.

It is appropriate that composers care more about the end
result than about the nebulous idea of algorithmic purity,
but ad hoc elements must be considered when placing
algorithmic composition in the larger context of
computational creativity. These systems were designed to
create art, not to test a hypothesis in a scientific way. As
such, it is dangerous to generalize about such systems'
capabilities, and their relationship to human creativity. I
am extremely skeptical of the claims about computational

creativity put forward by authors such as Boden and
Wolfram based on examplar systems such as those
discussed here. Boden writes that “whatever it is that [EMI
is] doing is clearly very general in nature” (Boden 2004,
312). Stephen Wolfram makes similarly broad claims
about his WolframTones system.

“even with the rules of a simple program, it was
possible to produce the kind of richness and
complexity that, for example, we see and admire in
nature... We were making music that was good
enough that people assumed it must have the usual
human origins: we had succeeded in passing the
analog of the Turing test for music.” (Wolfram 2011)

I do not doubt that the output from these programs can be
called creative, but in nearly every computational music
program there are ad hoc modifications that cast doubt on
the effectiveness of such systems in other domains. Ad hoc
methods are used to model a specific task rather than the
general functioning of the brain. These programs may
reflect how people create specific forms of music, but it
seems unlikely that they tell us much about creative dance,
sculpture, web comics, or even music from other traditions.

One of the great aspects of MUME 2013 and MUME
2014 is the integration with the AIIDE conference, where
we are intermingled with other procedural content
practitioners. Musical metacreators could benefit from the
type of rhetorical discipline advocated by Gillian Smith in
The Seven Deadly Sins of PCG Research. Musical
metacreators must strive to answer the questions she poses
in a quantifiable way.

“How meaningfully different are the pieces of content
from each other? Are there certain kinds of content
that simply cannot be created? Are there certain kinds
of content that the generator seems to be biased
towards creating?... What were the assumptions made
when creating the generator - do you assume a
particular art style, or range of acceptable... values?”
(Smith 2013)

Smith's questions can be easily applied to music. Musical
metacreators should be held accountable for supplying
more than just hand picked examples. Counter examples
where an algorithm fails should be part of every technical
report. How is GenJam tied to the jazz idiom? Does Cope's
EMI model structures in non-western music? How does
Blackwell's swarm music perform in a more structured
style of music? If these questions are left unanswered, then
it is incumbent on musicologists to supply these answers.
Claims made by software creators must be examined by
researchers who understand both the code and the
underlying algorithms.

Finally, we must consider the question of why
successful algorithmic composition programs rely so much
on scruffy, ad hoc techniques. Music is tied to culture and
tradition as well as mathematical systems. Is algorithmic
purity desirable, or even compatible with the goals of
algorithmic composition as a field?

References

Biles, John A. 1994. GenJam: A Genetic Algorithm for
Generating Jazz Solos. In Proceedings of the 1994 International
Computer Music Conference. Accessed May 14, 2014.
http://igm.rit.edu/~jabics/BilesICMC94.pdf.

Biles, John A. 2013. Straight-Ahead Jazz with GenJam: A Quick
Demonstration. In Musical Metacreation: Papers from the 2013
AIIDE Workshop.

Blackwell, Tim. n.d. Swarm Music: Improvised Music with
Multi-Swarms. Accessed May 8, 2013.
http://igor.gold.ac.uk/~mas01tb/papers/SwarmMusicImprovised
MusicWithMultiswarms.pdf.

Boden, Margaret A. 2004. The Creative Mind: Myths and
Mechanisms. 2nd ed. London: Routledge.

Cope, David. 2005. Computer Models of Musical Creativity.
Cambridge, MA: The MIT Press

Cope, David. 2001. Virtual Music: Computer Synthesis of
Musical Style. Cambridge, MA: The MIT Press.

Floreano, Dario and Claudio Mattiussi. 2008. Bio-Inspired
Artificial Intelligence: Theories, Methods, and Technologies.
Cambridge, MA: The MIT Press.

Hofstadter, Doublas. 2001. Staring Emmy Straight in the Eye. In
Virtual Music: Computer Synthesis of Musical Style ed. David
Cope. Cambridge, MA: The MIT Press.

MacCallum, Robert M., Matthias Mauch, Austin Burt, and
Armand M. Leroi. 2012. Evolution of Music by Public Choice. In
Proceedings of the National Academy of Sciences of the United
States of America.

Nierhaus, Gerhard. 2010. Algorithmic Composition: Paradigms
of Automated Music Generation. Germany:
SpringerWienNewYork.

Nilsson, Nils J. 2010. The Quest for Artificial Intelligence: A
History of Ideas and Achievements. New York: Cambridge
University Press.

Princeton University. 2010. About WordNet. Accessed July 1,
2014. http://wordnet.princeton.edu/wordnet/citing-wordnet/.

Smith, Gillian. 2013. The Seven Deadly Sins of PCG Research.
Accessed July 1, 2014. http://sokath.com/main/the-seven-deadly-
sins-of-pcg-papers-questionable-claims-edition/.

Wolfram Research. n.d. Composition Controls. Accessed August
10, 2014. http://tones.wolfram.com/about/controls.html.

Wolfram, Stephen. 2011. Music, Mathematica, and the
Computational Universe. Accessed July 1, 2014.
http://blog.stephenwolfram.com/2011/06/music-mathematica-
and-the-computational-universe/.

